Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Konstantin V. Luzyanin, ${ }^{\text {a }}$ Matti Haukka, ${ }^{\text {b }}{ }^{*}$ Yulia A. Izotova, ${ }^{\text {c }}$ Armando J.L. Pombeiro ${ }^{\mathrm{a}}$ and Vadim Yu. Kukushkin ${ }^{\text {c }}$
${ }^{\text {a }}$ Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal,
${ }^{\mathbf{b}}$ Department of Chemistry, University of Joensuu, PO Box 111, FI-80101 Joensuu, Finland, and ${ }^{\text {c }}$ Department of Chemistry, St Petersburg State University, 198504 Stary Petergof, Russian Federation

Correspondence e-mail:
matti.haukka@joensuu.fi

Key indicators

Single-crystal X-ray study $T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.032$
$w R$ factor $=0.060$
Data-to-parameter ratio $=20.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

Triphenylbenzylphosphonium trichloro(propiononitrile)platinate(II)

In the title platinum(II) propiononitrile complex, $\left[\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{Ph}\right]\left[\mathrm{PtCl}_{3}(\mathrm{EtCN})\right]$, the coordination polyhedron of the metal center is slightly distorted square planar.

Comment

As part of our interest in the reactivity of metal-activated nitriles toward nucleophilic addition (Kukushkin \& Pombeiro, 2002), we have performed two kinetic studies devoted to the addition of such HON-nucleophiles as N, N-dialkylhydroxylamines (Luzyanin et al., 2005) and oximes (Luzyanin et al., 2006) to Pt-bound organonitriles. The known complex $\left[\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{Ph}\right]\left[\mathrm{PtCl}_{3}(\mathrm{EtCN})\right]$, (I), (Kuznetsov et al., 2000) has been chosen as a convenient starting material for these studies because it has only one nitrile ligand, in contrast to the more common $\left[\mathrm{PtCl}_{2}(R \mathrm{CN})_{2}\right]$, and can be easily prepared in a pure form. Here we report the molecular structure of (I), determined by a single-crystal X-ray diffraction analysis.

(I)

The complex $\left[\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{Ph}\right]\left[\mathrm{PtCl}_{3}(\mathrm{EtCN})\right]$, crystallizes from an acetone solution in air at room temperature in the monoclinic space group $P 2_{1} / c$. In (I), the coordination of the metal center is slightly distorted square planar and the bond lengths and angles (Table 1) are normal (Allen et al., 1987). In the anion, the values of the trans $-\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ bonds and the value of the $\mathrm{Pt}-\mathrm{Cl}$ bond (trans to N) are the same within 3σ, indicating that the ground-state trans influence is similar for the nitrile and chloro ligands. The $\mathrm{Pt}-\mathrm{N}$ and nitrile $\mathrm{C} \equiv \mathrm{N}$ bonds are typical for $\mathrm{Pt}^{\mathrm{II}}$-organonitrile complexes (Orpen et al., 1989). In the cation, the $\mathrm{P}-\mathrm{CH}_{2}$ bond is in the range of normal values (1.791-1.841 A) (Allen et al., 1987). The structure of the title compound is consistent with relevant $\mathrm{Pt}-$ organonitrile complexes of the type (cation) $\left[\mathrm{PtCl}_{3}(R \mathrm{CN})\right]$ with different counter-ions and/or another R group in the nitrile (Kukushkin et al., 1990; Wagner et al., 2001).

Experimental

The title complex was prepared according to the method of Kuznetsov et al. (2000).

Crystal data

$\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}\right)\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$M_{r}=709.92$
Monoclinic, $P 2_{1} / c$
$a=10.0016$ (2) \AA
$b=9.0130(2) \AA$
$c=30.2234(6) \AA$
$\beta=91.7290$ (12) ${ }^{\circ}$
$V=2723.23(10) \AA^{3}$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offset Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.417, T_{\text {max }}=0.640$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0228 P)^{2}\right. \\
&+2.2335 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.25 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
(grant SFRH/BD/10464/2002). KVL, YAI and VYK are grateful to the Russian Fund for Basic Research for grant 06-03-32065.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brandenburg, K. (2006). DIAMOND. Version 3.1c. Crystal Impact GbR, Bonn, Germany.
Kukushkin, V. Yu., Krol, I. A., Starikova, Z. A. \& Tkachuk, V. M. (1990). Russ. J. Coord. Chem. (Koord. Khim.), 16, 1406-1415.

Kukushkin, V. Yu. \& Pombeiro, A. J. L. (2002). Chem. Rev. 102, 1771-1802.
Kuznetsov, M. L., Bokach, N. A., Kukushkin, V. Yu., Pakkanen, T., Wagner, G. \& Pombeiro, A. J. L. (2000). J. Chem. Soc. Dalton Trans. pp. 4683-4693.
Luzyanin, K. V., Kukushkin, V. Yu., Kuznetsov, M. L., Ryabov, A. D., Galanski, M., Haukka, M., Tretyakov, E. V., Ovcharenko, V. I., Kopylovich, M. N. \& Pombeiro, A. J. L. (2006). Inorg. Chem. 45, 2296-2306.
Luzyanin, K. V., Kukushkin, V. Yu., Ryabov, A. D., Haukka, M. \& Pombeiro, A. J. L. (2005). Inorg. Chem. 44, 2944-2953.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Wagner, G., Pakhomova, T. B., Bokach, N. A., Fraústo da Silva, J. J. R., Vicente, J., Pombeiro, A. J. L. \& Kukushkin, V. Yu. (2001). Inorg. Chem. 40, 1683-1689.

